

Reverse Polish Notation

Secure your Mobile software

by Protectedvoid.net

This document describes the RPN library developed by protectedvoid.net. This is done in a functional

way, as well as a technical way.

Introduction
When you have developed your application for the Windows Mobile platform, you probably don't

want everyone to use this product for free. You want to prevent customers from handing your

software over to friends for nothing. You will definitely earn more money when you protect your

software from piracy. Doing this based on RPN calculations does not make your software bullet

proof, but it is a standard that is supported by almost all distributors (pocketland, pocketgear,

handango, mobihand, ...) and supports a pretty good level of protection. How this process works, will

be described in the following chapters.

This library will support you protecting your software using RPN in a various ways. All different

features of this library will be explained in next chapters, as well as a technical description and the

operator support (which is pretty much everything) and some code samples.

Requirements
The library is developed using the Microsoft. NET Compact Framework 3.5 and written in C#.

Therefore this framework is required to be used on devices.

Features
 Activation code generation

o Based on the owner name of the device and you RPN string, the library generates the

code, which must be matched with the code supplied by the customer.

 Activation code storage

o This library supports a Storage class which you can use from your application. If this

class is used, the activation code that the user fills in your registration window, will

automatically saved in the registry. You can retrieve this code through this class also.

For a more technical description of this feature, please check the following chapters.

 Automatic activation

o This library comes with a base Form class (MainFormBase), from which you can

derive your main form in your application. If you do this, all required events are

picked up and the existence of a valid registration code is checked. If this is not the

case, the built in Activation window will popup, asking the user for a valid code.

Using this feature, you hardly have to worry about activation and can focus on the

main purpose of your application.

 Easy owner information retrieval

o Another available class is the DeviceOwner class. Using this class you have easy

access to the owner's name, phone number, notes and email address. The name of

this class is the name of the owner, which will be used for the code generation and

validation. No need to specify this, it is retrieved automatically from within the

calculator.

 Test tool

o For easily testing of RPN strings, an windows (desktop) based test utility is also

delivered with this library.

Technical overview
The main class of the library is the Calculator. This calculator must be instantiated with an RPN

string, and optionally a Storage class. This storage class describes your vendor name and the

product name. Based on this information, the calculator can retrieve the customer's activation code

from the registry. If this class is not specified, you cannot use this automatic validation feature. The

location of the history is "HKLM\Software\{VendorName}\ProductCode". A string value will be

created here with the name "RegistrationCode".

Operator support
The following operators are supported:

 Logical operators
o && (Logical And): Checks if both values are true
o || (Logical Or): Checks if one of both values is true
o ! (Not): Checks if one value is false
o == (Equals): Checks if two values are equal
o < (Less): Checks if value1 is less than value2
o <= (Less or equal): Checks if value1 is less or equal to value2
o > (Greater): Checks if value1 is larger than value2
o >= (Greater or equal): Checks if value1 is larger of equal to value2
o != (Not equal): Checks if two values are not equal

 Bitwise operators:
o << (Shift left): Performs 1 binary shift left on a single value
o >> (Shift right): Performs 1 binary shift right on a single value
o ~ (Invert): Inverts a single value
o & (Bitwise And): Performs an bitwise and on two values
o | (Bitwise Or): Performs an bitwise or on two values

 Arithmetic operators
o + (Add): Adds value1 to value2
o - (Subtract): Subtracts value2 from value1
o * (Multiply): Multiplies value1 by value2
o / (Divide): Divides value1 by value 2
o % (Modulo): Finds the remained of division of value1 by value2

Code Samples
This chapter describes some samples for using this library. Code samples are written in C#, but

converting them to VB.NET is trivial.

Calculate an activation code based on a name and RPN String

// Create a new instance of the Calculator class

Calculator calculator = new Calculator("i c + 12 *");

// Generate a code based on the name of the owner

string code = calculator.GenerateCode(DeviceOwner.Instance.Name);

Generate and validate a code using the Storage class and automatic retrieval of owner

name

Inherit from the base Form and implement automatic activation

By using this implementation, the base class (MainFormBase) will hook into the Activated and Load

event to check for the existence of a code in the registry based on the supplied Vendor and product

name. A built in activation window will be show, but you can also create your own registration screen

and supply that to the base form using the OnActivationWindowRequired override.

Conclusion
As you can see you have several ways to use this library. I would suggest to implement something

alike the last sample. This way you don't need to bother about the customers registration key and

the complete process around. Focus on your application and make money!

internal partial class MyMainApplicationForm : MainFormBase

{

 // Supply the base class with the vendor name

 protected override string VendorName

 {

 get { return "Protectedvoid"; }

 }

 // Supply the base class with the product name

 protected override string ProductName

 {

 get { return "EasyShopping"; }

 }

 // Supply the base class with a rpn string

 protected override string RpnString

 {

 get { return "i c * 2 * key + c 6 * + 3 - i *"; }

 }

 // Supply the base class with a message in case there is no valid

 // owner specified on the device

 protected override string NoOwnerMessage

 {

 get { return resourceMessageNoOwner.Text; }

 }

 // The rest of your forms implementation will be here

}

// Create a new Storage class based on the vendor and application name

Storage storage = new Storage("Protectedvoid", "MyApplication");

storage.RegistrationCode = userActivateCode; // The code which has been

entered by the user

// Create a new instance of the Calculator class

Calculator calculator = new Calculator("i c + 12 *", storage);

// Generate a code based on the owner of the device and the RPN string

// and validate it ahainst the code from te registry

bool hasValidCode = calculator.ValidateCode();

Questions
For questions, remarks or anything, please feel free to contact me at:

support@protectedvoid.net

